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Abstract
Objectives Hippocampal radiomic features (HRFs) can serve as biomarkers in Alzheimer’s disease (AD). However, how
different hippocampal segmentation methods affect HRFs in AD is still unknown. The aim of the study was to investigate
how different segmentation methods affect HRF accuracy in AD analysis.
Methods A total of 1650 subjects were identified from the Alzheimer’s Disease Neuroimaging Initiative database (ADNI). The
mini-mental state examination (MMSE) and Alzheimer’s disease assessment scale (ADAS-cog13) were also adopted. After
calculating the HRFs of intensity, shape, and textural features from each side of the hippocampus in structural magnetic
resonance imaging (sMRI), the consistency of HRFs calculated from 7 different hippocampal segmentation methods was
validated, and the performance of machine learning–based classification of AD vs. normal control (NC) adopting the different
HRFs was also examined. Additional 571 subjects from the European DTI Study on Dementia database (EDSD) were to validate
the consistency of results.
Results Between different segmentations, HRFs showed a high measurement consistency (R > 0.7), a high significant
consistency between NC, mild cognitive impairment (MCI), and AD (T-value plot, R > 0.8), and consistent significant
correlations between HRFs and MMSE/ADAS-cog13 (p < 0.05). The best NC vs. AD classification was obtained when
the hippocampus was sufficiently segmented by primitive majority voting (threshold = 0.2). High consistent results were
reproduced from independent EDSD cohort.
Conclusions HRFs exhibited high consistency across different hippocampal segmentation methods, and the best performance in
AD classification was obtained when HRFs were extracted by the naïve majority voting method with a more sufficient segmen-
tation and relatively low hippocampus segmentation accuracy.
Key Points
• The hippocampal radiomic features exhibited high measurement/statistical/clinical consistency across different hippocampal
segmentation methods.

• The best performance in AD classification was obtained when hippocampal radiomics were extracted by the naïve majority
voting method with a more sufficient segmentation and relatively low hippocampus segmentation accuracy.
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HRFs Hippocampal radiomic features
ICC Intraclass correlation coefficient
LLL Local label learning
MAIS Multi-atlas image segmentation
MCI Mild cognitive impairment
ML Metric learning
MMSE Mini-mental state examination
MV Majority voting
NC Normal control
NLP Nonlocal patch
RF Random forest
RF-SSLP Random forest-semi-supervised label

propagation
RLBP Random local binary pattern
ROC Receiver operating characteristic
SEN Sensitivity
SPE Specificity
SVM Support vector machine

Introduction

Alzheimer’s disease (AD) is one of the most common causes
of dementia in elder individuals and is a fatal neurodegenera-
tive disease characterized by progressive cognition impair-
ment [1–3], where mild cognitive impairment (MCI) is usual-
ly considered a transitional stage between normal aging and
early dementia [4, 5]. Radiomics has been demonstrated as a
powerful method to extract comprehensive information from
specific medical image regions [6–10], including intensity,
shape, and texture features. Since hippocampal morphological
change is one of the main hallmarks of AD/MCI, hippocampal
radiomic features (HRFs) have been used as robust neuroim-
aging biomarkers for clinical application in AD/MCI based on
a multisite structural magnetic resonance imaging (sMRI)
study [8–11]. However, how different hippocampal segmen-
tation methods affect HRFs when applied in AD analysis is
still unknown.

The prerequisite of HRFs calculation is hippocampal seg-
mentation from MR images, and a variety of hippocampal
segmentation methods have emerged at present. In the previ-
ous study, we compared the performances from different hip-
pocampal segmentation methods, including majority voting
(MV) [12], nonlocal patch (NLP) [13], random local binary
pattern (RLBP) [14], metric learning (ML) [15], local label
learning (LLL) [16], random forest (RF) [17], and random
forest-semi-supervised label propagation (RF-SSLP) [18]
using the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (http://adni.loni.usc.edu). Interestingly, the
machine learning–based multi-atlas image segmentation
(MAIS) methods have high computational cost, but the seg-
mentation accuracy is only slightly improved [18]. One issue
is raised regarding how much the difference of segmentation

accuracy affects HRFs and therefore the classification be-
tween AD and normal control (NC) or between AD and
MCI. The aim of the study is to investigative how segmenta-
tion methods affect HRF accuracy in AD analysis, and find
out the optimal hippocampus segmentation method and the
associated HRFs that achieve the best performance of classi-
fication between AD and NC or between AD and MCI. In our
study, the different segmentation methods under comparison
include MV [12], NLP [13], RLBP [14], ML [15], LLL [16],
RF [17], and RF-SSLP [18]. For a comprehensive compari-
son, a series of threshold values of 0.1–0.9 with a step size of
0.1 was adopted in the MV method to obtain the sufficient
segmentation or under segmentation. We hypothesize that dif-
ferent segmentation methods will not significantly affect
HRFs when used in AD analysis, and the hippocampal sur-
rounding area covering voxels with small gray matter volume
at the edge of the hippocampus obtained by a more sufficient
segmentation can also contribute valuable information when
extracting radiomic features for AD analysis.

Materials and methods

Data acquisition and processing

In our study, 1650 participants consisting of 603 NC, 764
MCI, and 283 AD subjects were obtained from the ADNI
dataset (http://adni.loni.usc.edu). The clinical measurements
of mini-mental state examination (MMSE) score and
Alzheimer’s disease assessment scale (ADAS-cog13) [19]
for those subjects were also identified from the ADNI cohort
(https://ida.loni.usc.edu/pages/access/studyData.jsp) and are
summarized in Table 1. The ADNI study was approved by
the institutional review boards of all the participating
institutions. Informed written consent was obtained from all
participants across ADNI-1, ADNI-GO, ADNI-2, and ADNI-
3 studies [20].

An additional dataset of 571 subjects consisting of 230 NC,
183 MCI, and 158 AD subjects was obtained from the EDSD
cohort (The European DTI Study on Dementia, https://
neugrid4you.eu) to serve as a validation dataset in the
present study. The demographic characteristics and MMSE

Table 1 The detailed information about the subjects from the ADNI
cohort

NC (N = 603) MCI (N = 764) AD (N = 283) p

Age (years) 73.46 ± 6.17 72.96 ± 7.70 74.91 ± 7.70 < 0.001

Gender (M/F) 277/326 447/317 152/131 < 0.001

MMSE 29.08 ± 1.10 27.57 ± 1.81 23.18 ± 2.14 < 0.001

ADAS-cog13 10.37 ± 4.37 16.63 ± 6.67 30.03 ± 7.91 < 0.001
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score for those subjects were also identified from the EDSD
cohort (details can be found in the supplementary materials
S01). The dataset from EDSD served as an independent and
supplementary dataset to validate the consistency of the result
obtained from ADNI.

The hippocampus segmentation

For each subject, the T1-weighted MR image was aligned to
Montreal Neurological Institute (MNI) space using a linear
registration method and resampled to 1 × 1 × 1 mm3 after
N4 correction using the Advanced Normalization Tools
(ANTs) (https://github.com/ANTsX/ANTs), followed by
identifying bounding boxes that were large enough to cover
the hippocampal region in the MNI space. The bilateral
hippocampus was then segmented using different
segmentation methods, including MV [12], NLP [13], RLBP
[14], ML [15], LLL [16], RF [17], and RF-SSLP [18].
Detailed information about those segmentation methods can
be found in our previous study [18].

Besides, since most existing MAIS methods were chas-
ing hippocampus segmentation accuracy, the under seg-
mentation or sufficient segmentation of the hippocampus
was generated for a comprehensive comparison when
using HRFs in classification between AD and NC or be-
tween AD and MCI. The under or sufficient segmentation
was produced by segmenting bilateral hippocampus by the
MV method with a series of threshold values from 0.1 to

0.9 (step size = 0.1) [12] (Fig. 1a). The visualization of
hippocampal segmentation obtained from different seg-
mentation methods for the sampled participants is provided
in supplementary materials S02.

Hippocampal radiomic feature calculation

Based on the hippocampus segmentation achieved above, the
radiomic features of the bilateral hippocampus were computed
by a publicly available MATLAB script (https://github.com/
YongLiulab) [10]. Specifically, a total of 55 features (14
intensity features, 8 shape features, and 33 textural features)
were calculated for each side hippocampus, resulting in 55 * 2
= 110 features for each individual (including left and right
hippocampus). The intensity features were the first-order sta-
tistical distribution of voxel intensities of the hippocampus,
the shape features were the descriptors of the 3D size and
shape of the hippocampus, and the textural features were de-
scribing the spatial distribution of voxel intensities of the hip-
pocampus. The definition of each radiomic feature and the
parameters for calculation can be found in the previous studies
[6, 10] (Fig. 1b) and supplementary materials S03.

Statistical analysis

The statistical analysis was designed to validate the con-
sistency or reveal the difference of HRFs in AD ana-
lysis based on different segmentation methods, including

Fig. 1 Schematic of the data analysis pipeline. The hippocampus was
segmented using different hippocampal segmentation methods in a;
radiomic features of each hippocampal segmentation were extracted in

b; performing the group difference, correlation, and classification
analysis in AD, MCI, and NC in c. NC, normal control; MCI, mild
cognitive impairment; AD, Alzheimer’s disease
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measurement consistency, statistical consistency, and
clinical consistency. The present study consisted of
three experiments described below after normalizing
each HRF among individuals using a max-min standard-
ized method (Fig. 1c). The Bonferroni correction was
adopted to correct the multiple comparisons.

To examine the measurement consistency of HRFs obtain-
ed from different segmentation methods, the Pearson correla-
tion of HRFs between all unique paired segmentationmethods
was performed for each individual. In our study, 7 segmenta-
tion methods of MV, NLP, RLBP, ML, LLL, RF, and RF-
SSLP were adopted, and the number of unique pairs was 7 ×
6/2 = 21. For each unique paired segmentation method, 1650
R-values corresponding to all subjects in this study were ob-
tained. Furthermore, the distribution of R-values was delineat-
ed to evaluate whether the high consistency could be obtained
for most subjects in each pair of segmentation methods.

To evaluate the statistically significant consistency of
HRFs in the MCI and AD groups, three group comparisons
of AD vs. NC, MCI vs. NC, and AD vs. MCI were performed
on HRFs by the two-sample two-sided T-test, in which, each
group comparison was implemented upon the 7 segmentation
methods. The statistical significance of each HRF quantified
by a series of T-values was then evaluated after removing the
age and sex effects with a linear regression model (i.e.,
Radiomic feature = Original radiomic feature − (W1 × age +
W2 × sex)). Then, the statistically significant consistency of
HRFs in the MCI and AD groups was determined by the
Pearson correlation of T-values between all unique paired seg-
mentation methods in each group comparison.

The clinical consistency was defined as the correlation be-
tween the radiomic features and clinical measures across dif-
ferent hippocampal segmentationmethods. To further validate
the clinical consistency of HRFs under different segmentation
methods, the Pearson correlation was performed between
HRFs and clinical measurements of MMSE and ADAS-
cog13 in the MCI and AD groups. The clinical consistency
of HRFs in the MCI and AD groups was determined by an
additional Pearson correlation between the R-values of all
unique paired segmentation methods.

Furthermore, to evaluate whether the different MRI scan-
ning protocols would significantly affect the consistency of
HRFs across different segmentation methods, three subsets
with different parameters were identified from all involved
ADNI subjects for conducting a re-analysis. Of the original
1650 subjects in ADNI, 1275 participants were found with the
same 1.2-mm slice thickness but with 1.5-T/3-T field strength,
and the remaining 375 participants without clarified field
strength were excluded. Therefore, group 1 (N = 506,
172NC, 262MCI, and 72AD) was at 3-T field strength with
1.2-mm slice thickness, group 2 (N = 769, 216NC, 374MCI,
and 179AD) was at 1.5-T field strength with 1.2-mm slice

thickness, and group 3 (N = 1275, 388NC, 636MCI, and
251AD) was the combination of group 1 and group 2.

Machine learning–based classification analysis

Other than the statistical analysis above, the machine
learning–based classification of NC and AD using different
HRFs obtained from the 7 segmentation methods was also
carried out. Specifically, a nonlinear support vector machine
(SVM) model with a radial basis function kernel was adopted
based on the LIBSVM library (http://www.csie.ntu.edu.tw/
~cjlin/libsvm/) and the classification performance was
determined by calculating the accuracy (ACC), specificity
(SPE), sensitivity (SEN), and area under the receiver
operating characteristic (ROC) curve (AUC) with a 10-fold
cross-validation strategy (Fig. 1c).

To further expand the segmentation accuracy and obtain
more comprehensive segmentations of sufficient segmenta-
tion and under segmentation, the MV method implemented
by a series of threshold values from 0.1 to 0.9 (step size = 0.1)
was also carried out, followed by the machine learning–based
classification analysis above. Typically, threshold = 0.5 was
used in a number of studies [12], threshold < 0.5 indicates a
sufficient-segmentation where the MV result covers more sur-
rounding voxels with small gray matter volume at the edge of
the hippocampus, and threshold > 0.5 indicates an under
segmentation.

In addition, the classification of AD andMCI under the same
setting above was also conducted based on the 7 segmentation
methods. Specifically, due to the high imbalance of AD subjects
andMCI subjects in ADNI, theMCI with equal amounts of AD
(N = 283) was first randomly sampled for 100 times. After that,
for each time, the 10-fold cross-validation was performed using
the same machine learning–based classification method as AD
vs. NC. At last, the performance of HRFs under different seg-
mentation methods in classifying AD andMCI was assessed by
the mean measures of 100 10-fold cross-validation.

Test-retest analysis to identify the most reliable
radiomic features

Given the high consistency of the radiomic features between
all segmentation methods, a test-retest analysis for each
radiomic feature was performed to identify the most or least
reliable radiomic features. Briefly, intraclass correlation coef-
ficient (ICC; ICC = (BMS − WMS)/BMS) was calculated to
estimate the reliability in different segmentation methods when
measuring each radiomic feature, where BMS is the between-
subjects mean square, and WMS is the within-subject mean
square [21, 22]. In the present study, the radiomic features with
ICC > 0.7 were with high reliability [22].
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Results

Demographic characteristics and neuropsychological
assessments

The 1650 subjects (ADNI), including 603 NCs, 764MCI, and
283 AD subjects, were identified in the present study. Among
the three groups, significant differences were observed in age
(p < 0.001, ANOVA test) and sex (p < 0.001, chi-square test).
Besides, the clinical measures (MMSE score and ADAS-
cog13 score) were significantly different among the three
groups (p < 0.001, ANOVA test) (Table 1).

A total of 571 subjects (EDSD), including 230 NCs, 183
MCI, and 158 AD subjects, were also identified in the present
study. Among the three groups, significant differences were

observed in age (p < 0.001, ANOVA test) and sex (p < 0.001,
chi-square test). Besides, the MMSE score was significantly
different among the three groups (p < 0.001, ANOVA test)
(Table S1 in supplementary materials S01).

High consistency of radiomics features obtained from
different segmentation methods

(1) Measurement consistency: For most subjects (55–84%
under different paired methods, mean 72%, std 8.5), the
HRFs showed a high consistency between all unique
paired segmentation methods, where the R-value of the
Pearson correlation was bigger than 0.7 (Fig. 2). The
highest consistency of the HRFs (more than 80% of sub-
jects) happened between RF and RLBP, RF-SSLP and
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Fig. 2 The distribution of the R-value of correlation between the radiomic features was computed with seven different hippocampal segmentation
methods. The number indicates how much the ratio is with R-value > 0.7



RLBP, and RF and RF-SSLP hippocampal segmentation
methods (with the R-value > 0.7).

(2) Statistical consistency: When comparing groups NC and
AD (Fig. 3a), the HRFs showed a high statistically sig-
nificant consistency despite different segmentation
methods according to the color observation of the T-
value plot. Of the 110 HRFs involved, significant differ-
ences were observed in a variety of HRFs between AD
and NC (p < 0.05), especially in the “Size,” “Area,”
“Compactness,” “GLN,” and “RLN” (p < 10−10). High
R-values of the Pearson correlation of the T-values were
also observed between all unique paired segmentation
methods (R-value > 0.8, Fig. 3d). Additionally, the same
consistency was also observed in group comparison of
NC vs. MCI (Fig. 3b), and MCI vs. AD (Fig. 3c), also
with R-value > 0.8 between all unique paired segmenta-
tion methods (Fig. 3e and f).

(3) Clinical consistency: The significant correlation was ob-
served between the HRFs and MMSE score in MCI and
AD groups with p < 0.05, especially in the “Size,”

“Area,” “Compactness,” “GLN,” and “RLN” (p <
10−10). More importantly, the results showed that the
correlation values were significantly correlated between
all unique paired segmentation methods (R-value > 0.9)
(Fig. 4a and c). Besides, the significant correlations be-
tween the HRFs and ADAS-cog13 score inMCI and AD
group were also found in this study, and the associated
correlation values were significantly correlated between
all unique paired segmentation methods (R-value > 0.9)
(Fig. 4b and d).

(4) The re-analysis between subsets of ADNI: The re-
analysis demonstrated that the results of group 1, group
2, and group 3 subsets were of great similarity with the
whole ADNI database in terms of measurement/statisti-
cal/clinical consistency of HRFs across different hippo-
campal segmentation methods, highlighting the repro-
ducibility of consistency of HRFs under different MRI
scanning protocols (detailed results can be found in sup-
plementary materials S04). Moreover, ADNI is a large
complicated database comprising more than 50 sites

Fig. 3 The difference map of the radiomics features. a–c The T-values of
the statistical difference of radiomic features between AD and NC in a,
between NC and MCI in b, and between MCI and AD in c were
calculated based on seven hippocampal segmentation methods. d–f The
R-values of correlation between the T-values of the above difference

analysis in a–c respectively were calculated between the seven
hippocampal segmentation methods. L means left and R means right of
the hippocampus. NC, normal control; AD, Alzheimer’s disease; MCI,
mild cognitive impairment
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with different imaging protocols, which further demon-
strated the reliability and robustness of the results partic-
ularly on ADNI cohort with such heterogeneity.

Classification performance

Based on a machine learning–based classification of AD and
NC, AUC > 0.88 (maximum = 0.89) and ACC > 83.97%
(maximum= 85.67%) were observed for all involved segmen-
tation methods of MV, RF, RF-SSLP, ML, LLL, NLP, and
RLBP when considering both left and right HRFs (Table 2,
and Fig. 5). It is noted that the classification model was pro-
duced without using any feature selection method due to the
low-dimension feature vector (N = 110).

When sufficient-segmenting or under-segmenting the hip-
pocampus by MV with a series of threshold values (from 0.1
to 0.9, step size = 0.1), the ACC values ranged from 78.56 to
86.23% (combined left and right HRFs) were observed
(Supplementary materials S05, and Fig. 5). The maximum
ACC achieved when the hippocampus was sufficiently seg-
mented by a threshold of 0.2, which was also the best perfor-
mance when using HRFs in AD and NC classification.

Regarding the classification of AD and MCI, the bilateral
HRFs exhibited AUC > 0.73 (maximum = 0.76) and ACC >
67.79% (maximum = 70.36%) for all involved segmentation
methods. Besides, the performance of bilateral HRFs under
sufficient-segmentation or under-segmentation showed the

ACC ranged from 62.99 to 70.50%, and the AUC ranged from
0.68 to 0.77 (Supplementary materials S06). The maximum
ACC and AUC were obtained by the sufficient-segmentation
with a MV threshold of 0.1, which further proved the suffi-
cient segmentation of the hippocampus could contribute to a
better AD classification.

Consistency results were obtained with the EDSD
dataset

The abovementioned results were reproduced in an indepen-
dent dataset EDSD with n = 571 shown in the supplementary
materials. Interestingly, the results showed very high consis-
tency between the results in the ADNI dataset (“Classification
performance” section) and the EDSD dataset (supplementary
Table S2, Table S3, and Fig. S1 in supplementary materials
S01).

Test-retest analysis to identify the most reliable
radiomic features

A total of 110 (55 × 2) HRFs were extracted for each individ-
ual, of which, 74 features obtained ICC > 0.7 in ADNI, and 67
features in EDSD (Table 3). More importantly, 64 identical
features are presented in both cohorts (Table 4), indicating the
strong degree of reproducibility for the reliability of radiomic
features. The ICCs for radiomic features in ADNI and EDSD
cohorts are exhibited in the supplementary Fig. S15 and Fig.
S16 in supplementary materials S07, respectively.

Fig. 4 The correlation map between the radiomic features and clinical
information. The R-values of the correlation between radiomic features
and MMSE (a), ADAS-cog13 (b) were calculated based on seven hippo-
campal segmentationmethods; c and dwere the correlation of theR-value

in a and b between the seven segmentation methods. L means left and R
means right of the hippocampus. MMSE, mini-mental state examination;
ADAS-cog13, Alzheimer’s disease assessment scale
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Discussion

In the present study, we investigated how different seg-
mentation methods affect hippocampal radiomic feature
accuracy in Alzheimer’s disease analysis. Specifically,
plenty of complicated MAIS methods for hippocampus
segmentation were proposed and chasing the segmenta-
tion accuracy. Given the segmentation accuracy which
was only slightly improved between different segmenta-
tion methods, we validated the measurement/statistical/
clinical consistency of HRFs calculated from 7 different
hippocampal segmentation methods. We concluded that
HRFs showed highly consistency across different hippo-
campal segmentation methods. Besides, a machine
learning–based classification of AD vs. NC and AD vs.
MCI adopting the different HRFs demonstrated that the
naïve MV (threshold value = 0.1 or 0.2) which produced a
more sufficient segmentation with a relatively low seg-
mentation accuracy was the best method to extract hippo-
campal radiomic features and achieved the highest accu-
racy in AD classification analysis. It indicated that the

naïve MV method might be sufficient when using
radiomics in diagnosing AD, and chasing the hippocam-
pus segmentation accuracy with a complicated strategy
might be unnecessary.

In recent studies, radiomic features played an important
role in diagnosing disease [7, 23, 24]. Numerous studies
emphasized the importance of radiomics [24], and consid-
ered radiomics as a bridge between medical imaging and
personalized medicine [25]. More importantly, radiomics
also increased the precision of diagnosis, treatment, and
prognosis of the tumor [6, 26, 27]. In recent years, hip-
pocampal radiomic features were confirmed to serve as a
neuroimaging biomarker for AD [8–11, 28]. Our results
confirmed and extended previous neuroimaging findings
[8–11, 28], which showed robust AD-related alterations of
radiomic features. Briefly, the intensity features including
kurtosis, mean, mad, median, entropy, and uniformity and
shape features including size, area, compactness, and
surf2vol showed significant differences between the AD
and NC groups. Interestingly, the textural features, includ-
ing LRE, GLN, RLN, and SRE, were significantly differ-
ent between the AD and NC groups, consistent with pre-
vious research [10, 11]. More importantly, the radiomic
features, which showed significant differences between
the AD and NC groups, were almost repeated using dif-
ferent segmentation methods. It is crucial for the research
community to elucidate reproducible and replicative bio-
markers for various diseases [29, 30]. This study proved
that the radiomic features were robust between different
hippocampal segmentation methods.

In recent years, the computer-aided diagnosis of AD
was with around 90% accuracy [10, 31–34], of which,
two critical components were considered in AD analysis
in terms of sMRI: (1) gray matter volume of voxel or ROI
with deep learning or traditional machine learning method
[32, 35]; (2) the features derived from the ROI [9–11],
particularly from the hippocampus. Furthermore, the hip-
pocampal radiomic features were also suggested as sensi-
tive neuroimaging biomarkers for AD [8–11, 28], which
could obtain about 85–90% accuracy in the classification
AD and NC. In general, the performance of the classifi-
cation model was influenced by the accuracy of the hip-
pocampal segmentation [18]. Interestingly, the accuracy
of the hippocampal segmentation methods was varied
from 85 to 90%, and the accuracy of the classification
of AD and NC was only varied from 84 to 86% in
Table 2 (68 to 70% in classification AD and MCI in
Table S10) based on different hippocampal segmentation
methods. Besides, we did not find a significant correlation
between the accuracy of the hippocampal segmentation
methods and the accuracy of AD and NC classification.
Thus, the radiomic features were influenced little by dif-
ferent hippocampal segmentation methods.

Table 2 The ACC, SPE, SEN, and AUC of the classification AD and
NC in the ADNI cohort when the different segmentation methods were
used. ACC, accuracy; SPE, specificity; SEN, sensitivity; AUC, the area
under the receiver operating characteristic; AD, Alzheimer’s disease; NC,
normal control

Segmentation
method

Feature ACC SPE SEN AUC

RF Left 85.44% 91.87% 71.73% 0.89

Right 84.13% 91.71% 68.55% 0.85

Left+right 85.67% 92.70% 70.67% 0.89

RF-SSLP Left 85.67% 92.54% 71.02% 0.89

Right 84.99% 92.70% 68.55% 0.86

Left+right 85.55% 92.70% 70.32% 0.89

LLL Left 83.97% 90.05% 71.02% 0.88

Right 83.30% 91.04% 66.78% 0.85

Left+right 84.99% 92.37% 69.26% 0.88

ML Left 84.09% 91.04% 69.26% 0.87

Right 83.52% 91.21% 67.14% 0.85

Left+right 84.31% 92.70% 66.43% 0.88

MV Left 84.76% 91.54% 70.32% 0.87

Right 83.63% 90.71% 68.55% 0.85

Left+right 84.54% 92.04% 68.55% 0.88

NLP Left 84.20% 91.87% 67.84% 0.88

Right 84.42% 92.04% 68.20% 0.85

Left+right 84.88% 92.54% 68.55% 0.89

RLBP Left 84.99% 91.38% 71.38% 0.89

Right 84.09% 91.38% 68.55% 0.86

Left+right 85.55% 93.03% 69.61% 0.89

6972 European Radiology (2022) 32:6965–6976



In our study, the classification model’s accuracy between
AD and NC was varied from 74 to 86% when the MVmeth-
od was adopted in hippocampal segmentation with a series
of threshold values. A more vast segmentation of the hip-
pocampus was obtained with the threshold value = 0.1

(ACC = 86%). In contrast, a smaller region of the hippo-
campus was obtained with the threshold value = 0.9 (ACC =
74%). The MV method was a primitive MAIS method [18]
with relatively low accuracy in hippocampal segmentation.
However, the accuracy of classification AD and NC based

Fig. 5 The results of classification AD from NC obtained based on
different segmentation methods. The ROC curve of the classification
results was obtained from RF, RF-SSLP, LLL, ML, MV, NLP, and
RLBP based on the bilateral hippocampus (a), left hippocampus (b),
and right hippocampus (c). The ROC curve of the classification results
was obtained from different threshold values (0.1–0.9 with step size =

0.1) based on the bilateral hippocampus (d), left hippocampus (e), and
right hippocampus (f). The accuracy was obtained from different
segmentation methods (g) and the different threshold values (h). RF,
random forest; RF-SSLP, random forest semi-supervised label propaga-
tion; LLL, local label learning; ML, metric learning; MV, majority vot-
ing; NLP, nonlocal patch; RLBP, random local binary pattern

Table 3 The radiomic features
with ICC > 0.7 in the ADNI and
EDSD cohorts. ICC, intraclass
correlation coefficient

Left hippocampus Right hippocampus

Intensity (14) Shape (8) Texture (33) Intensity (14) Shape (8) Texture (33)

ADNI 14 8 15 14 8 15

EDSD 13 5 15 13 5 16

European Radiology (2022) 32:6965–6976 6973



on MV in a typical setting of threshold value = 0.5 was
almost equal with other hippocampal segmentation
methods. Importantly, the highest ACC = 86%was obtained
based on the threshold value of MV = 0.1 or 0.2. The result
enlightened that hippocampal surrounding area covering
the voxels with small gray matter volume at the edge of
the hippocampus obtained by a more sufficient segmenta-
tion could also provide valuable information when
extracting radiomic features for AD analysis. Moreover,
the identified patterns were highly consistent within the
AD vs. MCI classification, which demonstrated the reliabil-
ity and reproducibility of the study findings (Supplementary
materials S06).

For multi-atlas image segmentation (MAIS) methods, es-
pecially for the MV method, the larger the threshold, the
smaller the segmented hippocampus (under segmentation),
causing the loss of hippocampal information. In contrast, the

lower threshold means that the hippocampus was segmented
more completely (sufficient segmentation), and therefore pre-
serves more useful information. As shown in Fig. 6a, the seg-
mentation masks of the hippocampus obtained by the MV
method increase with the threshold going smaller. However,
the radiomics can only be calculated based on the entire seg-
mentation region of the hippocampus, no matter sufficient
segmentation or under segmentation. In this study, the best
classification accuracy was obtained when the threshold value
= 0.1 or 0.2, generating a sufficient segmentation of the hip-
pocampus covering more surrounding voxels with small gray
matter volume at the edge of the hippocampus. Therefore, we
only concluded that the surrounding area of the hippocampus
could contribute to AD analysis given the sufficient segmen-
tation and its associated radiomics, but finding the specific
radiomic feature that most correlated to the surrounding area
was impracticable.

Table 4 Radiomic features with ICC > 0.7 in the ADNI and EDSD cohorts. Identical features are in bold. ICC, intraclass correlation coefficient

Intensity Median Rms Mean Energy

Maximum Mad Std Var

Range Skewness Minimum Kurtosis

Entropy Uniformity

Shape Volume Max3dDiam Compactness1 Area

Surf2VolRatio Spherity SphericalDisprop Compactness2

Texture GLN RLN SRE LRE

RunPercentage LRLGLE SRHGLE HGLRE

LRGLE LGLRE SRLGLE SumVariance

Autocorrelation Variance SumAverage Contrast

Fig. 6 The hippocampal segmentation result and radiomic features are
obtained based on the MV. a An example of the hippocampal
segmentation results obtained with the threshold value ranged from 0.1

to 0.9; b the mean value of the radiomic features (normalized) among all
individuals based on the different threshold values
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The comparison between multiple different segmentation
algorithms, other than just one widely used segmentation tech-
nique, is essential in the present study. Although the typical
MV method could generate different segmentations by a se-
ries of thresholds (Fig. 6a), but it is a naïve hippocampus
segmentation method and achieves relatively low segmenta-
tion accuracy. The experiments solely on MV method could
be insufficient to demonstrate the hypothesis in our study.
Currently, plenty of advanced machine learning–based
MAIS methods were proposed based on the MV [36], and
were widely used to accurately segment the hippocampus.
As such, it is necessary to compare them for exploring wheth-
er different segmentation methods would significantly affect
HRFs when used in AD analysis. Besides, the segmentation
accuracy was only slightly improved but at the expense of
high computational cost; therefore, finding out optimal hippo-
campus segmentation strategy when extracting radiomics fea-
tures was also of great importance in AD analysis.

There are some limitations to this study. First, the age and
sex were not matched among the NC, MCI, and AD groups
due to the data acquisition. Second, the study included only
cases from the ADNI and EDSD databases with strictly con-
trolled, and the result should be confirmed in the general clin-
ical dataset with varied data acquisition parameters and image
quality. Third, the patients, such as vascular co-morbidity,
should be considered in the further study.

In conclusion, the results in our study demonstrated that
HRFs exhibited high measurement/statistical/clinical consis-
tency across different hippocampal segmentation methods,
and the best performance in AD classification was obtained
when HRFs were extracted by the naïve majority votingmeth-
od with a more sufficient segmentation and relatively low
hippocampus segmentation accuracy.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-09081-y.
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